منابع مشابه
Strongly nil-clean corner rings
We show that if $R$ is a ring with an arbitrary idempotent $e$ such that $eRe$ and $(1-e)R(1-e)$ are both strongly nil-clean rings, then $R/J(R)$ is nil-clean. In particular, under certain additional circumstances, $R$ is also nil-clean. These results somewhat improves on achievements due to Diesl in J. Algebra (2013) and to Koc{s}an-Wang-Zhou in J. Pure Appl. Algebra (2016). ...
متن کاملCommutative Nil Clean Group Rings
In [5] and [6], a nil clean ring was defined as a ring for which every element is the sum of a nilpotent and an idempotent. In this short article we characterize nil clean commutative group rings.
متن کاملNil-clean Companion Matrices
The classes of clean and nil-clean rings are closed with respect standard constructions as direct products and (triangular) matrix rings, cf. [12] resp. [4], while the classes of weakly (nil-)clean rings are not closed under these constructions. Moreover, while all matrix rings over fields are clean, [12] when we consider nil-clean rings there are strongly restrictions: if a matrix ring over a ...
متن کاملSome Properties of the Nil-Graphs of Ideals of Commutative Rings
Let R be a commutative ring with identity and Nil(R) be the set of nilpotent elements of R. The nil-graph of ideals of R is defined as the graph AG_N(R) whose vertex set is {I:(0)and there exists a non-trivial ideal such that and two distinct vertices and are adjacent if and only if . Here, we study conditions under which is complete or bipartite. Also, the independence number of is deter...
متن کاملA note on uniquely (nil) clean ring
A ring R is uniquely (nil) clean in case for any $a in R$ there exists a uniquely idempotent $ein R$ such that $a-e$ is invertible (nilpotent). Let $C =(A V W B)$ be the Morita Context ring. We determine conditions under which the rings $A,B$ are uniquely (nil) clean. Moreover we show that the center of a uniquely (nil) clean ring is uniquely (nil) clean.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra Colloquium
سال: 2017
ISSN: 1005-3867,0219-1733
DOI: 10.1142/s1005386717000311